Nitric oxide-sensitive soluble guanylyl cyclase activity is preserved in internal mammary artery of type 2 diabetic patients.

نویسندگان

  • Klaus Witte
  • Jochen Hachenberger
  • Maria F Castell
  • Christian F Vahl
  • Christlieb Haller
چکیده

Vascular reactivity to nitric oxide (NO) is mediated by NO-sensitive soluble guanylyl cyclase (sGC). Since a diminished activity of vascular sGC has been reported in an animal model of type 2 diabetes, the sGC activity was assayed in vitro in internal mammary artery specimens obtained during bypass surgery from patients with and without type 2 diabetes. The sensitivity of sGC to NO, which is dependent on Fe(2+)-containing heme, was measured in vitro using stimulation with diethylamine NONOate (DEA/NO). In addition, the novel cyclic guanosine monophosphate-elevating compound HMR-1766 was used to test the stimulation of the oxidized heme-Fe(3+)-containing form of sGC. Basal activity of sGC and its sensitivity to stimulation by DEA/NO and HMR-1766 were not different between control and type 2 diabetic patients: maximum stimulation by DEA/NO amounted to 475 +/- 67 and 418 +/- 59 pmol. mg(-1). min(-1) in control and type 2 diabetic patients, respectively. The maximum effects of HMR-1766 were 95 +/- 18 (control subjects) and 83 +/- 11 pmol. mg(-1). min(-1) (type 2 diabetic patients). Hypertension, hyperlipidemia, drug treatment with statins, ACE inhibitors, or nitrates had no effect on sGC activity. In conclusion, the present findings do not support the hypothesis that desensitization of sGC contributes to the pathogenesis of diabetic vascular dysfunction in humans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective guanylyl cyclase inhibitor reverses nitric oxide-induced vasorelaxation.

Effects of a novel soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), were characterized on guanylyl cyclase activity in cytosolic fraction of COS-7 cells overexpressing the alpha 1 and beta 1 subunits of the rat soluble enzyme. ODQ was a noncompetitive inhibitor of soluble guanylyl cyclase with respect to Mn2+ or Mn(2+)-GTP and was a mixed competitive/noncom...

متن کامل

Nitric oxide activates the beta 2 subunit of soluble guanylyl cyclase in the absence of a second subunit.

Previously characterized mammalian soluble guanylyl cyclases form alpha/beta heterodimers that can be activated by the gaseous messenger, nitric oxide, and the novel guanylyl cyclase modulator YC-1. Four mammalian subunits have been cloned named alpha(1), beta(1), alpha(2), and beta(2). The alpha(1)/beta(1) and alpha(2)/beta(1) heterodimeric enzyme isoforms have been rigorously characterized. T...

متن کامل

MsGC-beta3 forms active homodimers and inactive heterodimers with NO-sensitive soluble guanylyl cyclase subunits.

Soluble guanylyl cyclases are typically obligate heterodimers, composed of a single alpha and a single beta subunit. MsGC-beta3, identified in the tobacco hornworm Manduca sexta, was the first example of a soluble guanylyl cyclase that exhibited enzyme activity without the need for coexpression with additional subunits. Subsequent studies have revealed that the mammalian beta2 subunit also shar...

متن کامل

Hypoxic Vasospasm Mediated by cIMP: When Soluble Guanylyl Cyclase Turns Bad

In a number of isolated blood vessel types, hypoxia causes an acute contraction that is dependent on the presence of nitric oxide and activation of soluble guanylyl cyclase. It is more pronounced when the preparations are constricted and is therefore termed hypoxic augmentation of vasoconstriction. This hypoxic response is accompanied by increases in the intracellular level of inosine 5'-tripho...

متن کامل

Calcium-independent and cAMP-dependent modulation of soluble guanylyl cyclase activity by G protein-coupled receptors in pituitary cells.

It is well established that G protein-coupled receptors stimulate nitric oxide-sensitive soluble guanylyl cyclase by increasing intracellular Ca(2+) and activating Ca(2+)-dependent nitric-oxide synthases. In pituitary cells receptors that stimulated adenylyl cyclase, growth hormone-releasing hormone, corticotropin-releasing factor, and thyrotropin-releasing hormone also stimulated calcium signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 53 10  شماره 

صفحات  -

تاریخ انتشار 2004